Bayesian quantile regression for partially linear additive models
نویسندگان
چکیده
منابع مشابه
Additive Models for Quantile Regression
We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con
متن کاملBayesian inference for structured additive quantile regression models
Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...
متن کاملBayesian semiparametric additive quantile regression
Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...
متن کاملPartially linear censored quantile regression.
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2014
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-013-9446-9